CONCLUSION

NGM282 and FGF19 improve the biochemical and histological features in FXR-deficient mice fed a high-fat, high-fructose, high-cholesterol diet:
- Improve fibrosis scores
- Normalize serum ALT and AST concentrations
- Reduce hepatic expression of pro-inflammatory and pro-fibrogenic genes
- These effects occur in FXR-deficient mice suggesting that at least some of the anti-fibrotic actions of NGM282 occur independent of FXR
- The effect on fibrosis was observed in the absence of significant reduction in hepatic steatosis, indicating that at least some of the anti-fibrotic actions of NGM282 occur independent of changes in liver fat content
- Prolonged exposure to FGF19, but not NGM282, induces the formation of hepatocellular carcinoma in a FXR-deficient induced mouse model of NASH
- These data support further evaluation of NGM282 in clinical studies of patients with NASH

References
10. Disclosures: This work was funded by NGM Biopharmaceuticals, Inc.
11. Lei Ling, Mei Zhou, Marc Leardet, Stephen Rossi, Alex De Paoli, Hui Tian (et al.) - employees and stockholders of NGM Biopharmaceuticals, Inc.