Aldafermin Reduces Hydrophobic Bile Acids in a 24-Week, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study in Patients with Nonalcoholic Steatohepatitis

Arun J. Sanyal1, Lei Ling 2, Guy Neff 3, Cynthia D. Guy 4, Mustafa Bashir 5, Angelo H. Paredes 6, Juan P. Frias 7, Ziad Younes 8, James F. Trotter 9, Nadege Gunn 10, Sam E. Moussa 11, Anita Kohli 12, Kristin Nelson 2, Mildred Gottwald 2, William Chang 2, Andrew Z. Yan 2, Alex M. DePaoli 2, Hsiao D. Lieu 2, Stephen A. Harrison 10,13

Abstract 981 (EASL 2021)

INTRODUCTION
• Higher serum bile acid levels are associated with an increased risk of cirrhosis and liver-related morbidity and mortality.1–3
• Serum bile acids correlate with portal hypertension, and can predict decompensation, liver failure and transplant-free survival in chronic liver disease.2
• Aldafermin, an engineered FGF19 analog, potently inhibits bile acid synthesis via the suppression of CYPTA1, which encodes the first and rate-limiting enzyme in the classic bile acid synthetic pathway.4
• Here we report results from a secondary analysis of aldafermin on circulating bile acid profile in a 24-week, randomized, double-blind, placebo-controlled trial in patients with NASH

AIM
To evaluate change in serum bile acid profile in a 24-week study of aldafermin in patients with NASH

METHOD
• 78 subjects were randomized 1:2 to receive placebo (n=25) or aldafermin 1 mg (n=53) SC OD for 24 weeks at 8 US study sites.4
• Key inclusion criteria included biopsy-proven NASH with NAS≥4, F2 or F3 fibrosis and absolute liver fat content ≥8%.
• Fasting serum samples were collected at baseline (BL) and week 24 (W24)
• Concentrations of individual bile acids and 7alpha-hydroxy-4-cholesten-3-one (an intermediate of hepatic CYPTA1 activity) were measured by mass spectrometry methods.

RESULTS

Serum level of 7alpha-hydroxy-4-cholesten-3-one (C4), a surrogate of hepatic CYP7A1 activity, is a pharmacodynamics marker of aldafermin activity.
• At week 24, a robustly greater reduction from baseline in C4 was observed in the aldafermin group compared to placebo: −65% and +1% in aldafermin and placebo groups, respectively. P=0.001 vs placebo.

G/T Ratio

<table>
<thead>
<tr>
<th></th>
<th>BL</th>
<th>W24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>219</td>
<td>219</td>
</tr>
<tr>
<td>Aldafermin (n=53)</td>
<td>219</td>
<td>219</td>
</tr>
</tbody>
</table>

Fibrosis Improvement (21-stage) with No worsening in NASH

<table>
<thead>
<tr>
<th></th>
<th>% Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td>38</td>
</tr>
<tr>
<td>Patients Achieving >70% Reduction in DCA</td>
<td>>38</td>
</tr>
</tbody>
</table>

CONCLUSIONS

• Administration of aldafermin produced significant reductions in bile acids, and the more toxic, hydrophobic bile acids in particular.
• Among individual bile acids, aldafermin generated the most robust reduction in the secondary bile acid DCA.
• The preferential reduction of the more hydrophobic, glycine-conjugated bile acids, rather than the more hydrophilic, taurine-conjugated bile acids by aldafermin resulted in a lower G/T ratio and reduced bile acid toxicity.
• Aldafermin had greater anti-fibrotic effects in patients who achieved >70% reduction in DCA.

REFERENCES
5. Sanyal et al., Patient suppression of hydrophobic bile acids by aldaferrin in CBD/Primary sclerosing cholangitis, AASLD 2021.

Author Affiliations

EASL Conference, April 23-28, 2021
Amsterdam, Netherlands