Background

Growth Differentiation Factor 15 (GDF15) has been shown to have both immune suppressive and pro-cachectic effects. NGM120 is a novel, 1st-class, humanized monoclonal antibody that inhibits GFRAL (the receptor for GDF15) resulting in both anti-tumor and anti-cachexia effects in preclinical animal models. In a phase 1 voluntary study, NGM120 (10-400 mg) was well tolerated with a favorable safety profile. We present the data from Ph1a/1b dose finding study (NCT04068896) of NGM120 and NGM120 + gemcitabine (Gem/Nab-paclitaxel) in advanced cancer patients.

A mAb targeting GDF15/GFRAL engagement of autocrine immune system for its pleiotropic effects in addition to its central emergency circuit (black arrow).

Phase 1a – Monotherapy in Advanced Solid Tumors

NGM120 Safety Profile

- No dose-limiting toxicities observed and maximal tolerated dose not reached.
- Most AEs were Grade 1-2 and not attributed to NGM120, with fatigue (20%), nausea (13%), GIT increase (20%), and nausea (20%) being most frequent.
- Seven subjects experienced 11 SAE events, none of which were attributed to NGM120, but to the underlying diseases.

Anti-cachexia and Anti-Tumor Assessments

- Four patients showed >3.5% increased lean body mass at Week 8 among the evaluable patients (see below).
- Three subjects (30%) in the 30 mg cohort and two subjects (20%) in the 100 mg cohort had stable disease based on their best response according to RECIST 1.1 criteria, although no objective response was observed.

Pharmacokinetics

- Beta-trend of dose-dependent reduction in beta-hydroxybutyrate.
- Beta-hydroxybutyrate is a form of ketone bodies, which are proportional to the extent of lipolysis induced by GDF15, therefore, a PD biomarker for pathway inhibition.

Phase 1b – Chemotherapy Combination in Pancreatic Cancer

Safety Profile Consistent with Gem + Nab-P Treatment

- No dose-limiting toxicities observed and maximal tolerated dose not reached.
- Most AEs were not attributed to NGM120, with Grades 1-3 diarrhea (50%), nausea (50%), and fatigue (50%) being most frequent, which are commonly seen in the context of Gem+Nab-P therapy.
- Five subjects experienced 10 SAE events; however, none of them were related to NGM120, but to the chemotherapy and/or underlying disease.

Six CT-evaluable Patients Exhibit a 4% Average Maximal Increase in Lean Body Mass

- 4/6 CT-evaluable Patients Exhibit >5% Substantial Reduction in Tumor Biomarker

CONCLUSION

- Treatment with NGM120 is well tolerated, exhibiting no dose-limiting toxicities as monotherapy or in combination with Gem/Nab-P.
- PK exposure increased with dose.
- Increases in lean body mass and body weight were observed in a subset of the patients in both the monotherapy and combination settings.
- Five SIDs (LOD; 20%) were observed in the monotherapy cohorts in advanced solid tumors, but no objective responses were observed.
- All 4 CT-evaluable pancreatic cancer patients treated with NGM120 in combination with Gem/Nab-P demonstrated disease control at 16 weeks, with three PIs and three SDs, five of whom extending to at least 32 weeks.

A randomized, placebo-controlled, single-blind Phase 2a study is ongoing to further evaluate NGM120 in the 1st-line setting of pancreatic cancer in combination with Gem/Nab-P.

References

2. Chaus SS et al. Immunity, 2017
3. Dan G et al. Front Immunology, 2018

Acknowledgements

We thank our clinical investigators, all clinical investigators, clinical teams and NGM120 project team for their contributions to this study.

Clinical trials

1. NCT04068896
2. NCT03392116
3. NCT03505960
4. NCT03932116
5. NCT03932116

Disclosure

Dr. Rishi Jain has received clinical research institution funding from Belagene, NGM Biopharmaceuticals and Zymeworks Inc for the role as site principal investigator.

This study was funded by NGM Biopharmaceuticals, Inc.